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Abstract

We propose a modification of the Shapley value for monotonic games with a
coalition structure. The resulting coalitional value is a twofold extension of the
Shapley value in the following sense: (1) the amount obtained by any union
coincides with the Shapley value of the union in the quotient game; and (2) the
players of the union share this amount proportionally to their Shapley value in
the original game (i.e., without unions). We provide axiomatic characterizations
of this value close to those existing in the literature for the Owen value and in-
clude applications to coalition formation in bankruptcy and voting problems.
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1 Introduction

The assessment of the strategic position of each player in any game is a main objective
of the cooperative game theory, since it can be applied to e.g. sharing costs or profits
in economic problems or measuring the power distribution in voting systems. The
Shapley value (Shapley [21], also in Roth [20]) is the best known concept in this
respect, and its axiomatic presentation introduced a new, elegant style in game theory
and opened a fruitful research line.

Forming coalitions is a most natural behavior in cooperative games, and the eval-
uation of the consequences that derive from this action is of great interest to game
theorists and practitioners. Games with a coalition structure were first considered
by Aumann and Drèze [6], who extended the Shapley value to this new framework
in such a manner that the game really splits into subgames played by the unions
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isolatedly from each other, and every player receives the payoff allocated to him by
the Shapley value in the subgame he is playing within his union.

A second approach was adopted by Owen [18] (also in Owen [19]), when introduc-
ing and characterizing axiomatically a coalitional value called now Owen value. In
this case, the unions play a quotient game among themselves, and each one receives a
payoff which, in turn, is shared among its players in an internal game. Both payoffs,
in the quotient game for unions and within each union for its players, are given by the
Shapley value. In addition to the initial one, many other axiomatic characterizations
of the Owen value can be found in the literature (Hart and Kurz [14], Winter [26],
Amer and Carreras [4] and [5], Vázquez–Brage et al. [24], Hamiache [12], or Albizuri
[1], among others).

We shall restrict our attention to monotonic games, which form a central class of
cooperative games. For each finite player set N , the set of monotonic games on N
possesses a cone structure, i.e., it is closed under the linear operations v + w and λv
for λ ≥ 0, and a lattice structure with respect to the standard operations v ∨ w and
v ∧ w, and it is closed under the passing to quotient games and subgames. The class
includes, among others: the null game; all simple games (where values are interpreted
as power indices); specifically, all unanimity games, which form a useful basis of the
space of all games on each given player set; all nonnegative superadditive games; and
hence all nonnegative convex games, where the Shapley value belongs to the core due
to convexity. The class shows a satisfactory regular behavior with respect to many
notions of the cooperative game theory. For example, any value exclusively based on
marginal contributions and/or internal proportionalities is nonnegative on this class;
in particular, it is ready to act as a power index on the subclass of simple games.

In this paper, we consider another extension of the Shapley value, only for mono-
tonic games with a coalition structure. As in the case of the Owen value, the Shapley
value is used twice: first, in the quotient game, where each union receives its Shapley
value in this game (this former step being therefore common to the Owen value and
the new value proposed here); second, within each union, since we contend that all
players of each union should profit equally by joining it and hence they obtain payoffs
proportional to their Shapley value in the original game.

The organization is then as follows. In Section 2, the framework of the paper
is stated and a minimum of preliminaries is provided. In Section 3, we motivate
and define the proportional coalitional Shapley value and discuss its properties. The
axiomatic approach is presented in Section 4, where we supply several axiomatic
characterizations for this new coalitional value. In Section 5, the value is applied
to discuss the coalition formation in bankruptcy and voting problems, including a
numerical instance in each case. Finally, Section 6 collects some discussion and the
conclusions.

2 Preliminaries

Although the reader is assumed to be generally familiar with the cooperative game
theory, we recall here some basic notions. If S is any finite set, s = |S| will usually
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denote its cardinality.

2.1 Games and values

Let N = {1, 2, . . . , n} be a finite set of players and 2N be the set of its coalitions
(subsets of N). A cooperative game (from now on, simply a game) on N is a function
v : 2N → R, which assigns a real number v(S) to each coalition S ⊆ N and satisfies
v(∅) = 0. 1 A player i is a null player in v if v(S ∪ {i}) = v(S) for all S ⊆ N\{i}.
Two players i, j are symmetric in v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}.

A game v is monotonic if v(S) ≤ v(T ) whenever S ⊂ T ⊆ N . As was announced
in the introduction, in the sequel we will restrict our attention mainly to this class of
games: G+

N will denote the cone of monotonic games on a given N and G+ the class
of all monotonic games (arbitrary N). A monotonic game v is simple if v(S) = 0 or
v(S) = 1 for every S ⊆ N . The (sub)lattice of simple games on a given N will be
denoted by SGN , and by SG the class of all simple games (arbitrary N). In particular,
a simple game v is called a weighted majority game if there are nonnegative weights
w1, w2, . . . , wn and a quota q > 0 such that v(S) = 1 iff

∑

i∈S wi ≥ q, and v(S) = 0
otherwise. We then write v ≡ [q; w1, w2, . . . , wn].

For every nonempty coalition T ⊆ N , the unanimity game uT ∈ SGN is defined
by uT (S) = 1 if T ⊆ S or else uT (S) = 0. Every game v ∈ G+

N can be uniquely written
as a linear combination of unanimity games using the Harsanyi dividends [13]:

v =
∑

T⊆N : T 6=∅

αT uT , where αT =
∑

S⊆T

(−1)t−sv(S). (1)

By a value on G+ we will mean a map f that assigns to every game v ∈ G+
N a

vector f [v] ∈ R
N with components fi[v] for all i ∈ N . For example, the Shapley value

ϕ (Shapley [21]) is defined, if v ∈ G+
N and i ∈ N , by

ϕi[v] =
∑

S⊆N\{i}

1

n
(

n−1
s

) [v(S ∪ {i})− v(S)].

The Shapley value is the only value on G+ that satisfies the following properties:

• Efficiency:
∑

i∈N ϕi[v] = v(N) for all v ∈ G+
N .

• Null player property: if i is null in v then ϕi[v] = 0. 2

• Symmetry: if i, j are symmetric in v then ϕi[v] = ϕj [v].
• Additivity: ϕ[v + w] = ϕ[v] + ϕ[w] for all v, w ∈ G+

N .

The proof follows the same guidelines as Shapley’s [21] original proof 3 by apply-
ing, when using additivity in the uniqueness proof, the following relationship among
monotonic games derived from (1):

1When mentioning a game v we will often refer implicitly to the corresponding set of players N
on which it is defined. This will allow us to alleviate the notation .

2In fact, if v is monotonic then ϕi[v] > 0 iff i is a nonnull player in v, so that the null player
property could be stated as an “iff” condition .

3Referred to ϕ as a value on GN , the vector space of all cooperative games on N .
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v + v− = v+ if v+ =
∑

T : αT >0

αT uT and v− =
∑

T : αT <0

−αT uT . (2)

2.2 Games with a coalition structure

Let N = {1, 2, . . . , n}. Each partition P = {P1, P2, . . . , Pm} of N is a coalition struc-
ture on N , each Pk will be a union, and P (N) will denote the set of all coalition struc-
tures on N . The so–called trivial coalition structures are Pn = {{1}, {2}, . . . , {n}},
where each union is a singleton, and PN = {N}, where the grand coalition forms. If
j ∈ Pk ∈ P then P−j will denote the partition obtained from P when player j leaves
union Pk and becomes isolated, i.e.,

P−j = {Ph ∈ P : h 6= k} ∪ {Pk\{j}, {j}}.

A game with a coalition structure is a pair [v; P ] where v ∈ GN and P ∈ P (N) for
some N . We denote by G+cs

N the set of monotonic games with a coalition structure
on a given N and by G+cs the class of all monotonic games with a coalition structure
(arbitrary N).

If [v; P ] ∈ G+cs
N the quotient game vP ∈ G+

M is the cooperative game played by the
unions, or, rather, by the set M = {1, 2, . . . , m} of their representatives, as follows 4:

vP (R) = v(
⋃

r∈R

Pr) for all R ⊆ M.

(In the trivial case P = Pn we will identify M = N , k = i if Pk = {i}, and vP = v.)
A union Pk will be a null union in [v; P ] if k is a null player in vP , 5 and two unions
Pk, Ph will be symmetric unions in [v; P ] if k, h are symmetric players in vP .

By a coalitional value on G+cs we will mean a map g that assigns to every pair
[v; P ] ∈ G+cs

N a vector g[v; P ] ∈ R
N with components gi[v; P ] for all i ∈ N . For

example, the Owen value Φ (Owen [18]) is defined, if [v; P ] ∈ G+cs
N and i ∈ N , by

Φi[v; P ] =
∑

R⊆M\{k}

∑

T⊆Pk\{i}

1

mpk

1
(

m−1
r

)

1
(

pk−1
t

) [v(Q ∪ T ∪ {i}) − v(Q ∪ T )],

where Pk is the union such that i ∈ Pk and Q = ∪r∈RPr. The Owen value is the only
coalitional value on G+cs that satisfies the following properties:

• Efficiency:
∑

i∈N Φi[v; P ] = v(N) for all [v; P ] ∈ G+cs
N .

• Null player property: if i is null in v then Φi[v; P ] = 0 for all P ∈ P (N). 6

• Symmetry within unions: if i, j ∈ Pk are symmetric in v then Φi[v; P ] = Φj [v; P ].

4Recall footnote 1. While v refers to N , vP will refer to M .
5For example, if all i ∈ Pk are null in v then Pk is null in [v;P ]. The converse is not true.
6Although the game is assumed to be monotonic, it is not true in general that Φi[v;P ] 6= 0 when

i is a nonnull player in v (cf. footnotes 2 and 9).
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• Symmetry in the quotient game: if Pk, Ph are symmetric unions in [v; P ] then

∑

i∈Pk

Φi[v; P ] =
∑

j∈Ph

Φj [v; P ].

• Additivity: Φ[v + w; P ] = Φ[v; P ] + Φ[w; P ] for all v, w ∈ G+
N and all P ∈ P (N).

The proof is similar to Owen’s [18] original proof 7 using again relationship (2).
A coalitional value g on G+cs is a coalitional Shapley value if g[v; Pn] = ϕ[v] for

all v ∈ G+
N . For example, so is the Owen value. Then the Owen value is also the only

coalitional Shapley value on G+cs that satisfies the following properties:

• Quotient game property: for all [v, P ] ∈ G+cs and all Pk ∈ P

∑

i∈Pk

Φi[v; P ] = Φk[vP ; Pm].

• Balanced contributions within unions: for all [v, P ] ∈ G+cs, Pk ∈ P and i, j ∈ Pk

Φi[v; P ] − Φi[v; P−j ] = Φj [v; P ] − Φj [v; P−i].

This second axiomatic characterization was first discovered by Vázquez–Brage et
al. [24] when dealing with coalitional values on Gcs

N . In this case, the proof for mono-
tonic games with a coalition structure is completely analogous to theirs.

At this point we would like to add a comment, quoted from Vázquez–Brage et
al. [24], about the property of balanced contributions within unions:

This property states that, if two different players i and j are in the same
a priori union, the loss (or gain) that player i inflicts on player j when
he leaves the union is the same as the loss (or gain) inflicted on player
i when player j leaves the union. This property reflects the idea that all
players in a union should profit equally by joining the union and hence
that, in particular, it cannot be the case that one specific player receives
all the benefits generated by the formation of the union.

3 A new value for monotonic games with a coalition

structure

In this section we define a new coalitional value for monotonic games. We will call to
it “proportional coalitional Shapley value”. 8

Let [v; P ] ∈ G+cs and P = {P1, P2, . . . , Pm}. We derive the payoff that a player
i ∈ Pk will obtain from the following two–step procedure. First, the unions are

7Referred to Φ as a coalitional value on Gcs
N

, the set of all cooperative games with a coalition
structure on N .

8Incidentally, we wish to mention that this value was first defined and applied, only as a power
index (that is, for simple games), by one of us in the early eighties (Carreras and Mart́ın Rioja [9]
and [10]). Independently re–discovered by Alonso–Meijide recently, it will be given here a complete
treatment and a theoretical foundation.
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assumed to play the quotient game vP and get the payoff allocated by the Shapley
value to each one of them in this game: union Pk gets ϕk[vP ]. Then, we assume that
this amount is shared among the players of Pk proportionally to their Shapley value
in the original game v. Thus, the allocation that player i ∈ Pk receives is

ϕk[vP ]
ϕi[v]

∑

j∈Pk

ϕj [v]
.

Of course, due to the monotonicity of v, we have
∑

j∈Pk
ϕj [v] > 0, and hence the

procedure works, unless all players of Pk are null in v (cf. footnotes 2 and 5). In this
exceptional case, k is null in vP whence ϕk[vP ] = 0 and the allocation is undefined.
Since, more generally, ϕk[vP ] = 0 iff k is null in vP (even though not all players of Pk

are null in v), the exceptional case can be consistently solved by allocating 0 to all
i ∈ Pk whenever k is null in vP . We formalize the entire procedure as follows.

Definition 3.1 The proportional coalitional Shapley value π is the coalitional value
on G+cs defined, if [v; P ] ∈ G+cs and i ∈ Pk, by

πi[v; P ] =















ϕk[vP ]
ϕi[v]

∑

j∈Pk

ϕj [v]
if Pk is nonnull in [v; P ],

0 otherwise.

(3)

Notice that, since we are dealing with monotonic games only, if neither i (in v)
nor Pk (in [v; P ]) are null then πi[v; P ] > 0. More generally, π[v; P ] ≥ 0 for all
[v; P ] ∈ G+cs. We will call nonnegativity to this property, which is shared by the
Shapley value (ϕ[v] ≥ 0 for all v ∈ G+) and also by the Owen value (Φ[v; P ] ≥ 0 for
all [v; P ] ∈ G+cs).

The proportional coalitional Shapley value reflects the assumption that, once a
union has obtained its payoff, the players of such union should benefit equally from
joining it, in the sense that their payoffs should keep the proportions between the
allocations given by the Shapley value in the original game: technically, if i, j, . . . are
nonnull players in a union Pk then

πi[v; P ]

ϕi[v]
=

πj [v; P ]

ϕj [v]
= · · · = ck, (4)

ck being a constant such that ck = 0 if Pk is null in [v; P ] and ck > 0 otherwise.
In particular, the proportional coalitional Shapley value leaves invariant important

strength relationships between players in the original game. Indeed, let i, j ∈ Pk. If
they are symmetric in v (so that ϕi[v] = ϕj [v]), they will get equal payoffs at the
end of the process, i.e., πi[v; P ] = πj [v; P ]; if, instead, they are asymmetric, in the
sense that ϕi[v] 6= ϕj [v], they will still get different payoffs: πi[v; P ] 6= πj [v; P ] (unless
union Pk is null in [v; P ], in which case πi[v; P ] = 0 = πj [v; P ]).

From a practical viewpoint, it is worthy mentioning that the calculus of π[v; P ]
requires only computing ϕ[v] and ϕ[vP ]. The following example will illustrate this.
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Example 3.2 Let us take n = 6 and consider [v; P ] where v ≡ [9; 4, 3, 3, 3, 2, 2] is a
weighted majority game and P = {{1, 2}, {3, 5}, {4, 6}}. Then, vP ≡ [9; 7, 5, 5],

ϕ[v] = (18/60, 10/60, 10/60, 10/60, 6/60, 6/60),
ϕ[vP ] = (1/3, 1/3, 1/3),

and therefore
π[v; P ] = (3/14, 5/42, 5/24, 5/24, 1/8, 1/8).

Notice that, e.g., players 3 and 5 take joint profit from forming a union in presence of
the other two unions, but their final payoffs keep the ratio 5:3 found when evaluating
the original game.

The main properties of the proportional coalitional Shapley value will play an
essential role in the next section, within the comprehensive framework of an axiomatic
approach. However, we find it convenient to state and discuss them here and delaying
their proofs until that section.

The first property is that the proportional coalitional Shapley value coincides
with the Shapley value under both trivial coalition structures (and is, in particular,
a coalitional Shapley value):

π[v; Pn] = ϕ[v] and π[v; PN ] = ϕ[v] for all v ∈ G+
N .

Both properties are straightforward to check.
Moreover, the proportional coalitional Shapley value satisfies standard properties

already recalled for the Owen value in Section 2: efficiency, symmetry within unions,
symmetry in the quotient game, and the quotient game property.

A difference arises in the case of the null player property. While it is a simple
implication for the Owen value, it can be strengthened for the proportional coalitional
Shapley value: the allocation to a player belonging to a union vanishes iff the player is
null (in the original game) or the union is null (in the game with a coalition structure,
i.e., as a player in the quotient game). 9

The balanced contributions property is not satisfied by the proportional coalitional
Shapley value. It must be replaced by a “proportionality within unions”: for all
[v; P ] ∈ G+cs

N , Pk ∈ P and i, j ∈ Pk,

πi[v; P ]πj [v; Pn] = πj [v; P ]πi[v; Pn].

It is interesting to note that, since π is a coalitional Shapley value and the null player
property for ϕ is, actually, an “iff” condition (footnote 2), the proportionality within
unions gives, if i, j ∈ Pk are nonnull in v,

πi[v; P ]

πi[v; Pn]
=

πj [v; P ]

πj [v; Pn]
. (5)

9The Owen value satisfies the “if” but not the “only if” part of this stronger property: in Example
3.2 we find Φ[v; P ] = (1/3, 0, 1/6, 1/6, 1/6, 1/6), so that player 2 is nonnull in v and union P1 is
nonnull in [v; P ] but Φ2[v; P ] = 0.
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In fact, since π is a coalitional Shapley value, Eq. (5) leads us back to Eq. (4). This
property also admits a comparison with the balanced contributions property of the
Owen value: while this latter is written in an additive form, the proportionality within
unions adopts a multiplicative aspect. Thus, both properties share the spirit already
expressed in our quotation at the end of the previous section: they state that the
allocations obtained by any two players of a given union are in some manner related
to their payoffs in the original game. 10

Finally, neither the classical additivity holds for the proportional coalitional Shap-
ley value. It must be replaced by a more cumbersome statement, which needs some
previous explanation. Let us define 11, for all i ∈ N , if i ∈ Pk ∈ P ,

hi[v; P ] =







πi[v; P ]
∑

j∈Pk

πj [v; Pn] / πk[vP ; Pm] if Pk is nonnull in [v; P ],

πi[v; Pn] otherwise.

Since π is a coalitional Shapley value, the coefficient of πi[v; P ] in this expression
when Pk is nonnull becomes

∑

j∈Pk

πj [v; Pn]

πk[vP ; Pm]
=

∑

j∈Pk

ϕj [v]

ϕk[vP ]

and therefore this fraction might be considered as a (multiplicative) profit inverse
index, always positive, for any nonnull union Pk (it does not make sense for null

10It is worthy mentioning here that the Owen value satisfies a similar property of “proportionality
for reduced games within unions” that could replace the property of balanced contributions within
unions, thus providing a new characterization of the Owen value. Indeed, following Owen [18], let
[v; P ] and Pk ∈ P be given. For each S ⊆ Pk, let vP

S
be the game on M defined by

vP
S (R) = v

[

(
⋃

r∈R

Pr)\(Pk\S)
]

for each R ⊆ M.

This game is the modification of the standard quotient game vP when S replaces union Pk, as if the
players of Pk\S were temporarily inactive. The reduced game of v on Pk, denoted by wk, is then
given by

wk(S) = ϕk[vP
S ] for each S ⊆ Pk.

If, moreover, P pk is the trivial partition of Pk into singletons, the property of proportionality for
reduced games within unions states that, for each Pk and all i, j ∈ Pk,

Φi[v; P ]Φj[wk;P pk ] = Φj [v; P ]Φi[wk;P pk ],

which recalls our proportionality within unions. In fact, the Owen value admits being defined
similarly to the proportional coalitional Shapley value:

Φi[v;P ] =















ϕk[vP ]
ϕi[wk]

∑

j∈Pk

ϕj [wk]
if Pk is nonnull in [v; P ],

0 otherwise.

11Notice that the expression for the nonnull case is well defined since π is a coalitional Shapley
value and hence πk[vP ; P m] = ϕk[vP ] > 0 by footnote 2.
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unions, but neither it is interesting in this case). A profit inverse index equal to
1 means that forming the union does not change the payoffs of its members in the
original game (for example, whenever P = Pn). If the index is lesser than 1 then the
players of the union get profit from joining, whereas an index greater than 1 implies
that the union damages its members and is therefore not interesting to them.

Then it holds that, for all v, w ∈ G+cs
N and all P ∈ P (N),

h[v + w; P ] = h[v; P ] + h[w; P ], (6)

and we call to this property “weighted additivity”. The reason is that, by using the
definition of function h and the fact that π is a coalitional Shapley value, if Pk is
nonnull in [v; P ] and [w; P ], and hence in [v + w; P ] 12, then Eq. (6) yields, for all
i ∈ Pk,

πi[v; P ]

∑

j∈Pk

ϕj [v]

ϕk[vP ]
+ πi[w; P ]

∑

j∈Pk

ϕj [w]

ϕk[wP ]
= πi[v + w; P ]

∑

j∈Pk

ϕj [v + w]

ϕk[(v + w)P ]
, (7)

a kind of “weighted” additivity where the weights are the profit inverse indices. In-
stead, if Pk is null in [v; P ] and [w; P ], and hence in [v + w; P ], we simply get

πi[v; Pn] + πi[w; Pn] = πi[v + w; Pn], (8)

classical —i.e., not weighted— additivity for P = Pn, equivalent in turn to

ϕi[v] + ϕi[w] = ϕi[v + w].

Thus, Eqs. (7) and (8) enable us to gain an insight into the meaning of the weighted
additivity property stated in Eq. (6).

4 Axiomatic approach

We first provide in this section two quite different axiomatic characterizations of the
proportional coalitional Shapley value on G+cs. We state and prove them and show,
next, the independence of both axiomatic systems. Later on, we discuss the simple
game case.

Let us consider the following properties for a coalitional value g defined on G+cs.

A0. Nonnegativity: g[v; P ] ≥ 0 for all [v; P ] ∈ G+cs.

A1. Coalitional Shapley value property: g[v; Pn] = ϕ[v] for all v ∈ G+
N .

A2. Efficiency:
∑

i∈N

gi[v; P ] = v(N) for all [v; P ] ∈ G+cs
N .

12For monotonic games, a player is null in v + w iff so is in v and w. Since (v + w)P = vP + wP ,
a union Pk is then null in [v + w;P ] iff it is null in both [v; P ] and [w;P ].
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A3. Null player strong property: if [v; P ] ∈ G+cs and i ∈ Pk then gi[v; P ] = 0 iff i is
null in v or Pk is null in [v; P ]. 13

A4. Symmetry within unions: if i, j ∈ Pk are symmetric in v then gi[v; P ] = gj [v; P ].

A5. Symmetry in the quotient game: if Pk, Ph are symmetric in [v; P ] then

∑

i∈Pk

gi[v; P ] =
∑

j∈Ph

gj[v; P ].

A6. Weighted additivity: for all v, w ∈ G+
N and all P ∈ P (N)

h[v + w; P ] = h[v; P ] + h[w; P ]

where, for all i ∈ N , if i ∈ Pk ∈ P ,

hi[v; P ] =







gi[v; P ]
∑

j∈Pk

gj[v; Pn] / gk[vP ; Pm] if Pk is nonnull in [v; P ],

gi[v; Pn] otherwise,

and analogous definitions hold for hi[w; P ] and hi[v + w; P ]. 14.

A7. Quotient game property: for all [v; P ] ∈ G+cs
N and Pk ∈ P

∑

i∈Pk

gi[v; P ] = gk[vP ; Pm].

A8. Proportionality within unions: for all [v; P ] ∈ G+cs
N , Pk ∈ P and i, j ∈ Pk

gi[v; P ]gj [v; Pn] = gj[v; P ]gi[v; Pn].

Theorem 4.1 There is one and only one coalitional value on G+cs that satisfies ef-
ficiency (A2), the null player strong property (A3), symmetry within unions (A4),
symmetry in the quotient game (A5), and weighted additivity (A6). It is the propor-
tional coalitional Shapley value π.

Proof. (Existence) It suffices to check that the proportional coalitional Shapley value
satisfies the properties. Let [v; P ] ∈ G+cs

N .
A2. (Efficiency) From Eq. (3) it follows that, for all Pk ∈ P ,

∑

i∈Pk

πi[v; P ] = ϕk[vP ].

13In particular, k is null in vP iff gk[vP ; P m] = 0. (The qualifying “strong” is included in the
name of the property in order to distinguish it from the usual one.)

14According to footnote 13, function h is well defined in the nonnull case since gk[vP ; P m] 6= 0
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By the efficiency of ϕ,

∑

i∈N

πi[v; P ] =
∑

k∈M

∑

i∈Pk

πi[v; P ] =
∑

k∈M

ϕk[vP ] = vP (M) = v(N).

A3. (Null player strong property) According again to Eq. (3) and using footnote
2, it is clear that πi[v; P ] vanishes iff i is null in v or k is null in vP .

A4. (Symmetry within unions) Let i, j ∈ Pk be symmetric players in v. If Pk

is nonnull in [v; P ], Eq. (3) and the symmetry of the Shapley value yield πi[v; P ] =
πj [v; P ]. If, instead, Pk is null in [v; P ] then πi[v; P ] = 0 = πj [v; P ].

A5. (Symmetry in the quotient game) Let Pk, Ph be null in [v; P ]. Then

∑

i∈Pk

πi[v; P ] = 0 =
∑

j∈Ph

πj [v; P ].

Now let Pk, Ph be nonnull but symmetric in [v; P ]. Then, using Eq. (3) and the
symmetry of the Shapley value in the quotient game,

∑

i∈Pk

πi[v; P ] = ϕk[vP ] = ϕh[vP ] =
∑

j∈Ph

πj [v; P ].

A6. (Weighted additivity) Let i ∈ Pk. (a) If Pk is nonnull in [v; P ] then, using
that π is a coalitional Shapley value, it follows that

hi[v; P ] = πi[v; P ]

∑

j∈Pk

πj [v; Pn]

πk[vP ; Pm]
= ϕk[vP ]

ϕi[v]
∑

j∈Pk

ϕj [v]

∑

j∈Pk

ϕj [v]

ϕk[vP ]
= ϕi[v].

(b) If Pk is null in [v; P ] we also have hi[v; P ] = ϕi[v].
Now, let [w; P ] ∈ G+cs

N and i ∈ Pk. Independently of whether Pk is or is not null
in [v; P ], [w; P ] and/or [v + w; P ] 15, the relationship h[v + w; P ] = h[v; P ] + h[w; P ]
follows from our previous result on the coincidence of h[v; P ] and ϕ[v] for all v and
all P and the additivity of the Shapley value.

(Uniqueness) Let g be a coalitional value on G+cs satisfying A2–A6. We will show
that it is uniquely determined on each [v; P ] ∈ G+cs

N (arbitrary N). Several steps will
be needed. We remark the axioms used at each point.

(a) If v = 0 then gi[v; P ] = 0 for all i ∈ N and all P ∈ P (N) by A3.
(b) Let v = cuT with c > 0 and ∅ 6= T ⊆ N . Let Q = {k ∈ M : T ∩ Pk 6= ∅}

and Tk = T ∩ Pk for each k ∈ Q. By A3 again, if i /∈ T then gi[cuT ; P ] = 0. Since
(cuT )P = cuQ, all k, h ∈ Q are symmetric in (cuT )P . Then, by A5,

∑

i∈Tk

gi[cuT ; P ] =
∑

j∈Th

gj[cuT ; P ]. (9)

15Recall footnote 12.
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By A2,
∑

i∈T

gi[cuT ; P ] = cuT (N) = c.

Using Eq. (9) it follows that
∑

i∈Tk

gi[cuT ; P ] =
c

q
for all k ∈ Q (q = |Q|). (10)

Since all i, j ∈ Tk are symmetric in cuT , from A4 we get gi[cuT ; P ] = gj[cuT ; P ] and,
using Eq. (10), we conclude that

gi[cuT ; P ] =
c

qtk
for all i ∈ Tk (tk = |Tk|).

Summing up, if i ∈ Pk then

gi[cuT ; P ] =







c

qtk
if i ∈ T ,

0 otherwise,

and g is uniquely determined on each game of the form cuT with c > 0 and ∅ 6= T ⊆ N .
(c) Now let P = Pn. If i ∈ Pk, so that k = i and Pk = {i}, then, for every v ∈ G+

N

we have

hi[v; Pn] =







gi[v; Pn]
gi[v; Pn]

gi[v; Pn]
= gi[v; Pn] if i is nonnull in v,

gi[v; Pn] otherwise,

that is, hi[v; Pn] = gi[v; Pn] for all i ∈ N and all v ∈ G+
N . Then, for any v, w ∈ G+

N ,
A6 yields

g[v + w; Pn] = g[v; Pn] + g[w; Pn].

By combining it with A2–A4, this additivity of g as a sole function of the game once
P = Pn has been fixed, i.e., as a value on G+

N , the uniqueness of the Shapley value
stated in Subsection 2.1 gives

g[v; Pn] = ϕ[v] for all v ∈ G+
N .

(d) Property A6 can be inductively extended to any finite sum of games. Then,
let

v = v1 + v2 + · · · + vr =
r

∑

ℓ=1

vℓ in G+
N ,

P ∈ P (N) and Pk ∈ P . If Pk is null in [v; P ] then gi[v; P ] = 0 for all i ∈ Pk by A3.
If Pk is nonnull in [v; P ], let R = {1, 2, . . . , r}, R+ be the subset of indices ℓ ∈ R such
that Pk is nonnull in [vℓ; P ] and R0 = R\R+. By A6 we have, for each i ∈ Pk,

gi[v; P ]

∑

j∈Pk

gj[v; Pn]

gk[vP ; Pm]
=

∑

ℓ∈R+

gi[vℓ; P ]

∑

j∈Pk

gj[vℓ; P
n]

gk[vP
ℓ ; Pm]

+
∑

ℓ∈R0

gi[vℓ; P
n]. (11)
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Not all j ∈ Pk are null in v (otherwise k would be null in vP according to footnote 5).
Then

∑

j∈Pk
gj[v; Pn] > 0 16 and hence, from Eq. (11), gi[v; P ] can be expressed 17

in terms of gi[vℓ; P ] for ℓ ∈ R+ and expressions concerning only the Shapley value of
games v, vP , vℓ and vP

ℓ for different values of ℓ = 1, 2, . . . , r. The conclusion is that
if g was uniquely determined (for P ) on v1, v2, . . . , vr then it is uniquely determined
on [v; P ].

(e) Finally, let [v; P ] ∈ G+cs
N and v + v− = v+ according to Eq. (2). Using (d) it

follows that g is completely determined on [v+; P ] and [v−; P ] since both games are
sums of games of the form considered in (b). Using (d) again, it follows that g is
completely determined on [v; P ], and this concludes the uniqueness proof. �

Theorem 4.2 There is one and only one coalitional value on G+cs that is a non-
negative (A0) coalitional Shapley value (A1) and satisfies the quotient game property
(A7) and proportionality within unions (A8). It is the proportional coalitional Shapley
value π.

Proof. (Existence) It suffices again to check that the proportional coalitional Shapley
value satisfies the properties. Let [v; P ] ∈ G+cs

N .
A0. (Nonnegativity) It directly follows from Eq. (3) and the nonnegativity of the

Shapley value.
A1. (Coalitional Shapley value property) As was said above, this is straightforward

to check from Eq. (3).
A7. (Quotient game property) Again from Eq. (3) and having in mind A1, it

readily follows that, for all k ∈ M and independently of whether Pk is or is not null
in [v; P ],

∑

i∈Pk

πi[v; P ] = ϕk[vP ] = πk[vP ; Pm].

A8. (Proportionality within unions) Let i, j ∈ Pk ∈ P . Once more from Eq. (3)
and using A1, if Pk is nonnull in [v; P ] we get

πi[v; P ]πj [v; Pn] = ϕk[vP ]
ϕi[v]ϕj [v]
∑

ℓ∈Pk

ϕℓ[v]
(12)

and hence
πi[v; P ]πj [v; Pn] = πj [v; P ]πi[v; Pn]

16Note that, using (c), we have for v (and analogous relationships for each vℓ)

g[v;P n] = ϕ[v] and g[vP ; P m] = ϕ[vP ].

.
17Namely,

gi[v;P ] =
∑

ℓ∈R+

ϕk[vP ]

ϕk[vP
ℓ

]

∑

j∈Pk
ϕj [vℓ]

∑

j∈Pk
ϕj [v]

gi[vℓ;P ] +
∑

ℓ∈R0

ϕk[vP ]
∑

j∈Pk
ϕj [v]

ϕi[vℓ].
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by the symmetry of the second term in Eq. (12) with respect to i, j; and, if Pk is null
in [v; P ],

πi[v; P ]πj [v; Pn] = 0 = πj [v; P ]πi[v; Pn].

(Uniqueness) Let g1 and g2 be nonnegative (A0) coalitional Shapley values (A1)
on G+cs satisfying A7 and A8. We will show that g1 = g2. We will proceed again by
steps and remark the axioms used in the proof.

(a) Let [v; P ] ∈ G+cs
N and assume that i is a null player in v. Let i ∈ Pk. If there

is some j ∈ Pk that is nonnull in v then we have, by A1 and A8,

gr
i [v; P ]ϕj [v] = gr

j [v; P ]ϕi[v] for r = 1, 2

and therefore g1
i [v; P ] = g2

i [v; P ] = 0. If, instead, all players of Pk are null in v then
Pk is null in [v; P ] and, by A7 and A1,

∑

j∈Pk

gr
j [v; P ] = gr

k[vP ; Pm] = ϕk[vP ] = 0 for r = 1, 2.

From A0 it follows that gr
j [v; P ] = 0 for all j ∈ Pk and, in particular, for j = i.

Summing up, we have g1
i [v; P ] = g2

i [v; P ] = 0 for every player i null in v and any P .
(b) Using A1 and A7 it follows that g1, g2 coincide on unions: for each Pk

∑

i∈Pk

g1
i [v; P ] = g1

k[vP ; Pm] = ϕk[vP ] = g2
k[vP ; Pm] =

∑

j∈Pk

g2
j [v; P ].

(c) Let us assume for a while that g1
i [v; P ] 6= g2

i [v; P ] for some [v; P ] and some i.
Let i ∈ Pk for some Pk. According to (b), i cannot be the only player in Pk for which
the values do not coincide on [v; P ]. Moreover, if e.g. g1

i [v; P ] > g2
i [v; P ] then there

will be some j ∈ Pk with g1
j [v; P ] < g2

j [v; P ]. By step (a), i, j must be nonnull in v.
Let us apply A8 and A1 to these players. Then

(α) g1
i [v; P ]ϕj [v] = g1

j [v; P ]ϕi[v] and

(β) g2
i [v; P ]ϕj [v] = g2

j [v; P ]ϕi[v].
(13)

It follows that none of g1
i [v; P ], g1

j [v; P ], g2
i [v; P ] and g2

j [v; P ] can vanish: otherwise,

their signs would contradict (α) or (β) in Eqs. (13). 18 In fact, they are all positive.
Hence, by dividing term by term the equalities of (13) we get

g1
i [v; P ]

g2
i [v; P ]

=
g1

j [v; P ]

g2
j [v; P ]

.

However, the former fraction is > 1 while the latter is < 1, a contradiction. The
conclusion is that g1 = g2. �

18E.g., if g1

i [v; P ]=0 then (α) implies g1

j [v; P ] = 0, but therefore, according to our initial assump-

tions on the behavior of i, j with respect to g1, g2, we get g2

i [v;P ] < 0 and hence g2

j [v; P ] > 0, thus

contradicting (β) since ϕi[v], ϕj [v] > 0.
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Remark 4.3 (Independence of the axiomatic system in Theorem 4.1) The axiom
system A2–A6 is independent. Indeed:

(i) Let β denote the Banzhaf value, that is, the extension of the Banzhaf power
index for nonnull simple games (Banzhaf [7]) to a value for all cooperative games
(Owen [17]; also in Owen [19]). The coalitional value given for i ∈ Pk by

gi[v; P ] =















βk[vP ]
βi[v]

∑

j∈Pk

βj [v]
if Pk is nonnull in [v; P ],

0 otherwise

satisfies A3–A6 but not A2.

(ii) The coalitional value defined by

gi[v; P ] =
v(N)

mpk
for all i ∈ Pk

satisfies A2, A4, A5 and A6 but not A3.

(iii) Let ω = (ω1, ω2) be a weighting vector such that ω1 6= ω2 and ϕω be the
corresponding weighted Shapley value ((Kalai and Samet [15]). The coalitional
value defined by

g[v; P ] =

{

ϕω [v] if n = 2 and P = PN ,

π[v; P ] otherwise

satisfies A2, A3, A5 and A6 but not A4.

(iv) Using the same weighted Shapley value as in the previous item, the coalitional
value defined by

g[v; P ] =

{

ϕω[v] if n = 2 and P = Pn,

π[v; P ] otherwise

satisfies A2, A3, A4 and A6 but not A5.

(v) If v ∈ GN and i ∈ N , let

µi(v) = max
S⊆N\{i}

{v(S ∪ {i})− v(S)}

denote the maximum of the marginal contributions of player i in v. Then, the
coalitional value given for i ∈ Pk by

gi[v; P ] =



















µi(v)
∑

j∈Pk

µj(v)

µk(vP )
∑

h∈M

µh(vP )
v(N) if Pk is nonnull in [v; P ],

0 otherwise

satisfies A2–A5 but not A6.
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Remark 4.4 (Independence of the axiomatic system in Theorem 4.2) The axiom
system formed by A0, A1, A7 and A8 is independent. Indeed:

(i) As N = {1, 2, . . . , n}, for any nonempty subset S ⊆ N we can consider the
minimum and maximum members of S according to the ordering of natural
numbers. Let us consider the coalitional value g defined on G+cs

N , for each N ,
as follows. Given [v; P ] and Pk ∈ P ,

(a) if |Pk| > 1 and all i ∈ Pk are null in v then, for each i ∈ Pk,

gi[v; P ] =











−1 if i is the minimum of Pk,

1 if i is the maximum of Pk,

0 otherwise;

(b) in any other case, gi[v; P ] = πi[v; P ] for all i ∈ Pk.

The coalitional value so defined satisfies A1, A7 and A8 but it fails to be non-
negative.

(ii) Let α > 0. The coalitional value defined by gi[v; P ] = α/pk if [v; P ] ∈ G+cs and
i ∈ Pk is not a coalitional Shapley value but satisfies A0, A7 and A8.

(iii) The coalitional value given by g[v; P ] = ϕ[v] for all [v; P ] ∈ G+cs is a nonnegative
coalitional Shapley value that satisfies A8 but not A7.

(iv) The Owen value Φ is a nonnegative coalitional Shapley value that satisfies A7
but not A8.

Remark 4.5 (Simple games) As usual, given a simple game v we denote by

W (v) = {S ⊆ N : v(S) = 1}

the set of winning coalitions and by

Wm(v) = {S ∈ W (v) : T ⊂ S ⇒ T /∈ W (v)}

the set of minimal winning coalitions. Note that, if

Wm(v) = {S1, S2, . . . , Sr},

we have a decomposition of v as union of unanimity games:

v = uS1
∨ uS2

∨ · · · ∨ uSr
.

Let us denote by SGcs
N the set of simple games with a coalition structure on a given

N and by SGcs the class of all simple games with a coalition structure (arbitrary N).
Almost all properties A0–A8 can be restated for a coalitional value on simple games
just by restricting to this class of games the domain of validity of each one (having in
mind, for A7, that the class is closed under the passing to quotient games). The only
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exception is A6 (weighted additivity) since, as was noticed by Dubey [11], additivity
does not work for simple games. He replaced it with a “transfer property” in order to
get an axiomatic characterization of the Shapley value on these games (the so–called
Shapley–Shubik power index due to the seminal paper by Shapley and Shubik [22]);
correspondingly, we will replace A6 with the following property:

A9. Weighted transfer property: for all v, w ∈ SGN and all P ∈ P (N)

h[v ∨ w; P ] + h[v ∧ w; P ] = h[v; P ] + h[w; P ]

where, for all i ∈ N , if i ∈ Pk ∈ P ,

hi[v; P ] =







gi[v; P ]
∑

j∈Pk

gj[v; Pn] / gk[vP ; Pm] if Pk is nonnull in [v; P ],

gi[v; Pn] otherwise,

and analogous definitions hold for hi[w; P ], hi[v ∨ w; P ] and hi[v ∧ w; P ] (see
footnote 14).

Then Theorems 4.1 and 4.2 give rise to axiomatic characterizations of the propor-
tional coalitional Shapley value on simple games with a coalition structure (i.e., as a
coalitional power index).

Corollary 4.6 There is a unique coalitional value on SGcs that satisfies efficiency
(A2), the null player strong property (A3), symmetry within unions (A4), symmetry in
the quotient game (A5), and the weighted transfer property (A9). It is (the restriction
of) the proportional coalitional Shapley value.

Proof. (Existence) It suffices to check that the proportional coalitional Shapley
value π satisfies all these properties on SGcs. For A2–A5, the proof is the same as in
Theorem 4.1. As for A9, the basic point is that

v ∨ w + v ∧ w = v + w for all v, w ∈ SGN . 19

Using A6 it follows that if g = π then

h[v ∨ w; P ] + h[v ∧ w; P ] = h[v; P ] + h[w; P ] for all P ∈ P (N).

(Uniqueness) Let g be a coalitional value on SGcs satisfying A2–A5 and A9. We
will show that it is uniquely determined on each [v; P ] ∈ SGcs

N (arbitrary N). The
steps will be similar to those of Theorem 4.1 and even a bit simpler.

(a) If v = 0 then gi[v; P ] = 0 for all i ∈ N and all P ∈ P (N) by A3.
(b) Let v = uT for some nonempty T ⊆ N . As in Theorem 4,1, from A2, A3, A4

and A5 it follows that g[uT ; P ] is uniquely determined for all P : if i ∈ Pk then

gi[uT ; P ] =







1

qtk
if i ∈ T ,

0 otherwise,

19In fact, it is straightforward to show that this holds for all v, w ∈ GN , so that A9 is true for π
on the set of all monotonic games.
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where Q = {k ∈ M : T ∩Pk 6= ∅}, Tk = T ∩Pk for each k ∈ Q, q = |Q| and tk = |Tk|.
(c) Now, let P = Pn. As in Theorem 4.1, we find that h[v; Pn] = g[v; Pn] for all

v ∈ SGN . From A9 it follows that

g[v ∨ w; Pn] + g[v ∧ w; Pn] = g[v; Pn] + g[w; Pn].

Therefore, by combining with A2–A4 this property of g as a sole function of the
game once P = Pn has been fixed, i.e., as a value on SGN , the uniqueness of the
Shapley value on SGN stated by Dubey [11] yields

g[v; Pn] = ϕ[v] for all v ∈ SGN .

(d) Property A9 can be inductively extended to any finite union of games. Then,
if Wm(v) = {S1, S2, . . . , Sr} with r ≥ 2, from v = uS1

∨ uS2
∨ · · · ∨ uSr

, we get, for
all P ,

h[v; P ] =

r
∑

j=1

(−1)j+1
∑

1≤i1<···<ij≤r

h[uSi1
∨ uSi2

∨ · · · ∨ uSij
; P ]. 20 (14)

(e) We are ready to show that g[v; P ] is uniquely determined on all [v; P ] ∈ SGcs.
Let Pk ∈ P . If Pk is null in [v; P ] then gi[v; P ] = 0 for all i ∈ Pk by A3. If Pk

is nonnull, let R = {1, 2, . . . , r}, R+ be the subset of indices ℓ ∈ R such that Pk is
nonnull in [vℓ; P ], and R0 = R\R+. Using Eq. (14) we get, for each i ∈ Pk,

gi[v; P ]

∑

j∈Pk

gj [v; Pn]

gk[vP ; Pm]
=

∑

ℓ∈R+

gi[vℓ; P ]

∑

j∈Pk

gj[vℓ; P
n]

gk[vP
ℓ ; Pm]

+
∑

ℓ∈R0

gi[vℓ; P
n].

Not all j ∈ Pk are null in v (otherwise Pk would be null in [v; P ]). Then
∑

j∈Pk
gj [v; Pn] >

0 and we have

gi[v; P ] =
∑

ℓ∈R+

ϕk[vP ]

ϕk[vP
ℓ ]

∑

j∈Pk
ϕj [vℓ]

∑

j∈Pk
ϕj [v]

gi[vℓ; P ] +
∑

ℓ∈R0

ϕk[vP ]
∑

j∈Pk
ϕj [v]

ϕi[vℓ].

Thus, gi[v; P ] can be expressed in terms of gi[vℓ; P ] for ℓ ∈ R+ and expressions
concerning only the Shapley value of games v, vP , vℓ and vP

ℓ for different values of
ℓ = 1, 2, . . . , r. The conclusion is that, as g was uniquely determined (for P ) on
uS1

, uS2
, . . . , uSr

according to (b), it is uniquely determined on [v; P ]. �

Corollary 4.7 There is a unique coalitional value on SG+cs that is a nonnegative
(A0) coalitional Shapley value (A1) and satisfies the quotient game property (A7)
and proportionality within unions (A8). It is (the restriction of) the proportional
coalitional Shapley value π.

Proof. Existence follows at once from existence in Theorem 4.2, and the uniqueness
proof is completely analogous. �

20For example, if n = 3

h[u∨ v ∨w;P ] = h[u;P ] + h[v;P ] + h[w;P ]−h[u∧ v; P ]− h[u∧w;P ]−h[v ∧w;P ] + h[u∧ v ∧w;P ].
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5 Two examples

In this section we present two examples of application of the proportional coalitional
Shapley value. The first one refers to the classical bankruptcy problem. The second
refers to a voting problem.

Example 5.1 (The bankruptcy problem) The bankruptcy problem arises when the
estate E of a given company does not suffice to cover the sum of demands of the set
N = {1, 2, . . . , n} of its creditors. Let d = (d1, d2, . . . , dn) be the demand vector. Of
course, E and all di are positive numbers and it is assumed that

E <
∑

i∈N

di.

We denote a bankruptcy problem by [N, E, d]. Different rules can be found in
the literature that associate with each bankruptcy problem a division of the estate
E among the creditors. 21 One of the bankruptcy rules is the random arrival rule
(O’Neill [16]). Suppose that the creditors arrive one at a time and they are honored
until estate runs out. This means that, given a particular ordering π of the creditors,
the demand received by each one of them is: (i) fully satisfied, if the creditors pre-
ceding him in π can receive their complete demands and the remaining part of the
state is greater than, or equal to, his demand; (ii) partially satisfied, if this remaining
part is greater than 0 but lesser than his demand; or (iii) 0, if the sum of demands
of the creditors preceding him in π is greater than, or equal to, the state. To obtain
independence of the ordering, the arithmetic average over the set Π of all possible
orderings is taken. Then, the random arrival rule allocates to each creditor i ∈ N the
amount

rai[N, E, d] =
1

n!

∑

π∈Π

min
{

di, max{0, E −
∑

j∈N :
π(j)<π(i)

dj}
}

.

Based on a problem of rights arbitration taken from the Talmud, O’Neill [16]
introduced a cooperative game that reflects the strategic possibilities of the creditors
with respect to both the estate and the demand vector in a bankruptcy problem.

More precisely, given a bankruptcy problem [N, E, d], he defined a (monotonic)
cooperative game vE,d on the set N of creditors as follows:

vE,d(S) = max{0, E −
∑

j /∈S

dj} for each S ⊆ N.

In words, the worth that game vE,d assigns to each coalition is the remaining (if any)
of the estate when all the other creditors went to try to fully receive their demands
(note that

∑

i∈S di > E −
∑

j /∈S dj). If anything of the estate is not yet available,
the coalition gets 0. There are interesting links between certain bankruptcy rules and
solution concepts of the cooperative game theory. For our proposal, the important
relation is the following (O’Neill [16]):

21A good review of the topic is Thomson [23].
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The random arrival rule of a bankruptcy problem [N, E, d] provides the
same allocations as the Shapley value of the corresponding cooperative
game vE,d on N .

If the norms do not prevent the creditors from forming coalitions and presenting
joint demands, we are led to consider all coalition structures on the creditor set in
order to decide whether some of them should go together or not and which are their
possibilities to force such a situation.

We wish then to apply the proportional coalitional Shapley value to this problem
and analyze the possibilities to find a stable coalition structure in the sense that will
be explained below. Using this coalitional value, the unions of creditors share first the
estate E according to the application of the Shapley value to the quotient game and,
then, the payoff allocated to each union is shared among its members proportionally
to their Shapley value in the original game vE,d. The advantages of the method are:
(a) the Shapley value (the most important solution for cooperative games) is the only
rule used to divide the state and (b) the final sharing is based on proportionality, a
simple method that most people can understand easily. 22

Given a coalition structure P = {P1, P2, . . . , Pm} on the set of creditors, it is
easy to see that the proportional coalitional Shapley value of [vE,d; P ] assigns to
a creditor i ∈ Pk an amount related with the random arrival rule as follows: if
d = (d1, d2, . . . , dm) is the demand vector of the unions given by dk =

∑

j∈Pk
dj for

each k, then

πi[v
E,d; P ] = rak[M, E, d]

rai[N, E, d]
∑

j∈Pk

raj [N, E, d]
,

We will consider the numerical case taken from the Talmud by O’Neill. Then,
n = 4, E = 120 and d = (120, 60, 40, 30), so that

vE,d = 50u{1,2}+30u{1,3}+20u{1,4}+10u{1,2,3}+10u{1,2,4}+10u{1,3,4}−10u{1,2,3,4}.

By applying the proportional coalitional Shapley value to [vE,d; P ] for all P we get
the results given in Table 1.

In order to discuss this results, let us first compute the payoff that each creditor
can be sure to get by his own and independently of the behavior of the others, that
is, in the five coalition structures where the creditor stays alone. It is clear that these
“sure” payoffs are: 57.5000 for creditor 1, 28.3333 for 2, 18.3333 for 3, and 13.3333
for 4 (these amounts sum up to 117.5000). Therefore any coalition structure where a
creditor joins other creditors and gets less than his sure payoff should be disregarded.
This leaves us with the possibilities displayed in Table 2.

The creditors’ preferences on the five structures shown in Table 2 are the following:

22Therefore, no creditor should be expected to say “Don’t play with my money!”, “No adventures
in business!”, or something similar.
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coalition structure P 1 2 3 4
{{1},{2},{3},{4}} 57.5000 29.1667 19.1667 14.1667
{{1,2},{3},{4}} 56.3942 28.6058 20.0000 15.0000
{{1,3},{2},{4}} 56.2500 30.0000 18.7500 15.0000
{{1,4},{2},{3}} 56.1628 30.0000 20.0000 13.8372
{{2,3},{1},{4}} 58.3333 29.1667 19.1667 13.3333
{{2,4},{1},{3}} 58.3333 29.1667 18.3333 14.1667
{{3,4},{1},{2}} 58.3333 28.3333 19.1667 14.1667
{{1,2},{3,4}} 56.3942 28.6058 20.1250 14.8750
{{1,3},{2,4}} 56.2500 30.2885 18.7500 14.7115
{{1,4},{2,3}} 56.1628 30.1724 19.8276 13.8372
{{1,2,3},{4}} 57.0472 28.9370 19.0157 15.0000
{{1,2,4},{3}} 57.0248 28.9256 20.0000 14.0496
{{1,3,4},{2}} 56.9725 30.0000 18.9908 14.0367
{{2,3,4},{1}} 60.0000 28.0000 18.4000 13.6000
{N} 57.5000 29.1667 19.1667 14.1667

Table 1: The value π in the Talmud bankruptcy problem

coalition structure P 1 2 3 4
{{1},{2},{3},{4}} 57.5000 29.1667 19.1667 14.1667
{{2,3},{1},{4}} 58.3333 29.1667 19.1667 13.3333
{{2,4},{1},{3}} 58.3333 29.1667 18.3333 14.1667
{{3,4},{1},{2}} 58.3333 28.3333 19.1667 14.1667
{N} 57.5000 29.1667 19.1667 14.1667

Table 2: Feasible coalition structures in the Talmud bankruptcy problem

• 1: {2, 3} ≡ {2, 4} ≡ {3, 4} > Pn ≡ PN , although this creditor does not control
the formation of these two–player coalitions because he does not intervene in
any of them.

• 2: Pn ≡ {2, 3} ≡ {2, 4} ≡ PN > {3, 4}.

• 3: Pn ≡ {2, 3} ≡ {3, 4} ≡ PN > {2, 4}.

• 4: Pn ≡ {2, 4} ≡ {3, 4} ≡ PN > {2, 3}.

Therefore, we can conclude that creditor 1 is an undesired coalition partner and
the stable coalition structure that could be expected to form would be one among

• {{2, 3}, {1}, {4}}

• {{2, 4}, {1}, {3}}
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• {{3, 4}, {1}, {2}}

or

• Pn = {{1}, {2}, {3}, {4}}, the singleton trivial structure.

Which couple (if any) would form might finally depend on the personality of the
involved creditors (2, 3 and 4). Each one of these couples improves the payoff of its
members with respect to their sure level but also that of creditor 1, whereas the other
isolated creditor gets just his sure payoff. After all, maybe Pn would be a most likely
solution, since it does not require any agreement. (We disregard PN because it gives
the same result as Pn but its “formation cost”—an agreement of all creditors—would
be indubitably high.)

Let us illustrate the meaning attached to the vector of profit inverse indices by
considering, e.g., the coalition structure P = {{2, 3}, {1}, {4}}, for which the vector
is (1.00, 0.98, 1.06). This vector reflects that 2 and 3 are indifferent between forming
coalition {2, 3} or remaining alone while, if this sole coalition forms, 1 would get profit
and 4 would be damaged.

Example 5.2 (The Catalonia Parliament, Legislature 2003–2007 ) Independent na-
tion until 1714, Catalonia is nowadays one of the seventeen regions (called “au-
tonomous communities”) that shape the federal–like administrative structure of Spain
since the early eighties. Specific traditions, culture and language have been zealously
preserved by the Catalan people during centuries, and a strong nationalist feeling is
still shared by a majority of its inhabitants.

The Statute of Autonomy grants Catalonia a great deal of freedom to organize
itself and to decide on a series of matters concerning it. In particular, Catalonia
possesses a legislative body: the Catalonia Parliament. One of its main tasks is to
elect among the parliamentarians, at the beginning of each four–year legislature, the
president of the Catalonia Government, who in turn chooses the consellers (ministers)
that will form this autonomous (regional) government.

Five parties or pre–electoral coalitions elected members to the Catalonia Par-
liament (135 seats) in the elections held on 16 November 2003. Their names and
abbreviations and the seat distribution are:

1. Convergència i Unió (CiU), Catalan nationalist middle–of–the–road coalition
of two federated parties: 46 seats.

2. Partit dels Socialistes de Catalunya (PSC), moderate left–wing socialist party,
federated to the national Partido Socialista Obrero Español: 42 seats.

3. Esquerra Republicana de Catalunya (ERC), radical Catalan nationalist left–
wing party: 23 seats.

4. Partit Popular de Catalunya (PPC), conservative party, Catalan delegation of
the national Partido Popular: 15 seats.
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5. Iniciativa per Catalunya–Verds (ICV), coalition of Catalan euro–communist
parties, federated to the national Izquierda Unida, and ecologist groups (“Verds”):
9 seats.

Due to the party voting discipline—held even within CiU, considered a single party
from now on—, there are just five agents in this situation, which will be referred
to by their number or their abbreviation, indistinctly. The straight majority rule
usually applied in the Parliament for passing a bill enables us to describe the situation
by means of a weighted majority game where N is the above set of parties and
v ≡ [68; 46, 42, 23, 15, 9]. The set of minimal winning coalitions of this simple game is

Wm = {{1, 2}, {1, 3}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}}.

We wish to analyze the coalition structures in this game since no party got the
absolute majority and hence a coalition government might be expected to form. To
this end, we will use the proportional coalitional Shapley value. At least two reasons
can be adduced to support this choice.

First, when acting as a power index, the proportional coalitional Shapley value is
mainly based on the Shapley–Shubik index, an elegant mathematical concept whose
characteristic properties (efficiency, symmetry, null player property and transfer prop-
erty) can be easily accepted by politicians. Moreover, this index allocates to any party
a weighed sum of the times it is crucial for all coalitions of each given size from 1 to
n, and hence it measures the basic strategic capability of this party (i is crucial for
S ⊆ N in a simple game v iff S ∈ W (v) but S\{i} /∈ W (v)).

Second, the proportional coalitional Shapley value applies the Shapley–Shubik
index to the quotient game, where the unions act, but then, within each union, the
fraction of power obtained this way is efficiently and simply shared proportionally to
the power of each member of the union in the original game. This combination, of
efficiency, simplicity and use of the power indices in the quotient game (among unions)
and in the original game, seems to us a most natural procedure from a practical
political viewpoint.

Therefore, from the essential intervention of the original game in the final result,
it follows that this game should reflect the actual strategic possibilities of each party.
Taking v as starting game, we are assuming that all possible coalitions are fully likely
and no party disregards entering any union because of ideological constraints. In
practice, this is not always so. Then we will first modify the original game and
replace it with a more realistic restricted game prior to attack the coalition formation
problem.

We will follow Carreras [8], where two basic procedures are shown for taking into
account ideological constraints in simple games. The first one is based on affinities, the
second—more radical—on incompatibilities. The grounds for these procedures can be
found in the reference. The political structure of the current Catalonia Parliament—
see below—strongly suggests that the incompatibility method will be the most suitable
here. 23

23In other real–world examples, and depending on the underlying political structure, the affinity
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The method is follows. Given I, an irreflexive and symmetric binary relation on
N , a coalition S is called I–admissible iff no pair of incompatible players i, j (that is,
with iIj) can be found in S. Then we take

(WI)
m = {S ∈ Wm : S is I–admissible}

as new set of minimal winning coalitions and vI , the simple game so defined, as
restricted game.

In our case, we just consider the incompatibilities given by 3I4 and 4I5. Indeed,
all parties would be more or less able to join any other, if necessary; the only—but
radical—exceptions are the full direct antagonisms between ERC and PPC on one
hand and PPC and ICV on the other, both due to ideological reasons that encompass
very different positions on the left–to–right axis as well as, in the case of ERC, sound
divergences with respect to the Catalan nationalism. The incompatibility relation
introduced in these terms gives rise to a restricted game vI that will be used as
starting point and is defined by

(WI)
m = {{1, 2}, {1, 3}, {2, 3, 5}}.

Let us first analyze a bit this game and discover which has been the effect of
passing from v to vI . By comparing the Shapley–Shubik power index of games v and
vI we get

ϕ[v] = (0.4000, 0.2333, 0.2333, 0.0667, 0.0667),
ϕ[vI ] = (0.4167, 0.2500, 0.2500, 0.0000, 0.0833).

The effects of the incompatibilities (imposed by parties 3 and 5 rather than by party
4) are clear. Parties 3 and 5 get more power by declaring their incompatibility with
party 4, and this party becomes a null player. Nevertheless, simultaneously, parties
1 and 2 get more power too—an effect perhaps not completely desired by parties
3 and 5. The symmetry of 2 and 3 in the original game is preserved, whereas the
symmetry between 4 and 5 is broken in favor of party 5. Summing up, it seems
fully justified, from an ideological but also strategic viewpoint, the introduction of
the incompatibility relation I and the use of vI , instead of v, as starting game in
the analysis of the coalition formation. From now on, we will remove party 4 from
the game and consider the fifteen coalition structures arising in the new player set
N = {1, 2, 3, 5}.

The application of the proportional coalitional Shapley value π gives the results
displayed in Table 3.

The sure payoff of each party, i.e., the power it can get independently of the
behavior of the remaining parties, is 0. No coalition structure can then be disregarded
for this reason. If now we look at the best result that each party can obtain, we find:

procedure might be better suited in order to define the (more realistic) restricted game. Moreover,
perhaps not all links should be of the same intensity. More accuracy in this sense, that maybe would
imply some degree of subjective component, could be carried out using more sophisticated restriction
methods such as those presented in Amer and Carreras [3] and [4], based on cooperation indices. As
a first approach, we have preferred here to keep ourselves within the more elementary—i.e., more
qualitative, less quantitative—approach of Carreras [8].
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coalition structure P CiU (1) PSC (2) ERC (3) ICV (5)
{{1},{2},{3},{5}} 0.4167 0.2500 0.2500 0.0833
{{1,2},{3},{5}} 0.6250 0.3750 0.0000 0.0000
{{1,3},{2},{5}} 0.6250 0.0000 0.3750 0.0000
{{1,5},{2},{3}} 0.5556 0.1667 0.1667 0.1111
{{2,3},{1},{5}} 0.1667 0.3333 0.3333 0.1667
{{2,5},{1},{3}} 0.3333 0.2500 0.3333 0.0833
{{3,5},{1},{2}} 0.3333 0.3333 0.2500 0.0833
{{1,2},{3,5}} 0.6250 0.3750 0.0000 0.0000
{{1,3},{2,5}} 0.6250 0.0000 0.3750 0.0000
{{1,5},{2,3}} 0.4167 0.2500 0.2500 0.0833
{{1,2,3},{5}} 0.4545 0.2727 0.2727 0.0000
{{1,2,5},{3}} 0.5556 0.3333 0.0000 0.1111
{{1,3,5},{2}} 0.5556 0.0000 0.3333 0.1111
{{2,3,5},{1}} 0.0000 0.4286 0.4286 0.1429
{N} 0.4167 0.2500 0.2500 0.0833

Table 3: The value π for the coalition structures in vI

• 0.6250 for CiU in the coalition structures where it joins either PSC or ERC.

• 0.4286 for PSC and also for ERC when they join together ICV.

• 0.1667 for ICV when just PSC and ERC join.

Thus, no coalition structure can be distinguished this way. Nevertheless, in a simple
game one is mainly interested in the formation of a winning coalition, and this is a
new criterion under which Table 3 can be reduced to a shorter Table 4 (where the
singleton trivial structure is maintained as a disagreement point).

Now, all is clear. The best result for each party is:

• 0.6250 for CiU in the coalition structures where it joins either PSC or ERC.

• 0.4286 for PSC and also for ERC when they join together ICV.

• 0.1429 for ICV when joining both PSC and ERC.

The conclusion is obvious. In spite of the interest of CiU in joining PSC or ERC, the
expected result, that is, the only stable scenario, is the formation of a coalition among
PSC, ERC and ICV, which possesses a vote majority and can then form a government
free to act with the support of this majority in the Parliament. Since each one of its
members gets its best value in this coalition (in a proportion of 3 : 3 : 1), the coalition
structure that it defines enjoys stability in the very sense of the Nash equilibrium,
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coalition structure P CiU (1) PSC (2) ERC (3) ICV (5)
{{1},{2},{3},{5}} 0.4167 0.2500 0.2500 0.0833
{{1,2},{3},{5}} 0.6250 0.3750 0.0000 0.0000
{{1,3},{2},{5}} 0.6250 0.0000 0.3750 0.0000
{{1,2},{3,5}} 0.6250 0.3750 0.0000 0.0000
{{1,3},{2,5}} 0.6250 0.0000 0.3750 0.0000
{{1,2,3},{5}} 0.4545 0.2727 0.2727 0.0000
{{1,2,5},{3}} 0.5556 0.3333 0.0000 0.1111
{{1,3,5},{2}} 0.5556 0.0000 0.3333 0.1111
{{2,3,5},{1}} 0.0000 0.4286 0.4286 0.1429
{N} 0.4167 0.2500 0.2500 0.0833

Table 4: The value π for the “winning” coalition structures in vI

since no member of the union wishes to leave it. 24

It is worthy of mention that, after a short period of negotiations, PSC, ERC and
ICV signed an agreement (Pacte del Tinell) and formed the Catalonia Government.
Thus, our result fully concurs with the actual behavior of the involved parties. 25

Remark 5.3 (The proportional coalitional Shapley value for level coalition struc-
tures) Level coalition structures were first considered by Owen [18], who showed that
the Owen value adapts perfectly to them (see also Winter [25]). Let us discuss a
related question, interesting from both the theoretical and the practical side, raised
by the fact that a three–member coalition arises as the only stable one in Example
5.2. Which way will coalition {2, 3, 5} form: entering all at once or after forming some
binary pre–coalition? Using a simpler notation there are four possibilities, namely:

• 2 + 3 + 5

24An analogous analysis, carried out by taking v instead of vI as starting game, that is, leaving
aside the ideological constraints provided by the incompatibility relation I, would have led us to
conclude that the formation of either {1, 4, 5}, {2, 3, 4} or {2, 3, 5} gives the only stable coalition
structures among the “ minimal winning” ones.

The result is interesting for two reasons. (a) On the theoretical side, it is worthy of mention
that party 1 gets its best payoff (fraction of power) in joining both weakest parties and forming a
ternary coalition, instead of joining just one of the other—stronger—parties (2 or 3). Maybe this is
so because, in terms of strategic strength (i.e., according to the Shapley–Shubik index of game v), 2
and 3 are individually stronger than 4 and 5 together. (b) On the political side, {1, 4, 5} and {2, 3, 4}
would be hardly accepted as good solutions to the coalition formation problem just because PPC
and ICV in the first case, and ERC and PPC in the second, hold the only antagonistic ideological
positions. This would leave us with {2, 3, 5} as the only politically reasonable solution. Although
it just confirms our previous analysis using vI as initial game, we still claim that the ideological
constraints have to be incorporated to the starting point, as we did, because they deeply influence
the bargaining.

25Strong divergences between ERC and the remaining members of the tripartite government (PSC
and ICV) were increasingly apparent until May 2006, when ERC finally left the government, the
Parliament was dissolved, anticipated elections on 1 November 2006 were called for, and Legislature
2003–2007 finished prematurely.

26



• (2 + 3) + 5

• (2 + 5) + 3

• 2 + (3 + 5)

Then, a previous question is: does the proportional coalitional Shapley value
apply when the coalition structure has two or more levels? The answer is positive.
For instance, let us show how to proceed with (2 + 3) + 5 or, more formally, P =
{{1}, {{2, 3}, {5}}}. Let P = {{1}, {2, 3}, {5}} in N , M = {1, 2, 3}, P ′ = {{1}, {2, 3}}
in M and M ′ = {1, 2}. From vI we get (vI)

P and, from this latter, ((vI)
P )P ′

. The
Shapley value in each game gives

ϕ[vI ] = (5/12, 3/12, 3/12, 1/12),
ϕ[(vI)

P ] = (1/6, 4/6, 1/6),

ϕ[(vI)
P )P ′

] = (0, 1).

The Shapley value 1 allocated to player 2 in ((vI)
P )P ′

is shared among coalitions
{2, 3} and {5} proportionally to 4 and 1, and hence it allocates 4/5 to {2, 3} and
1/5 to party 5. Next, 4/5 is equally shared among parties 2 and 3 and gives 2/5
each. Thus, the proportional coalitional Shapley value corresponding to the two–level
structure P , informally denoted by (2 + 3) + 5, gives

π[vI ;P ] = (0, 2/5, 2/5, 1/5).

We can then discuss which of the four possibilities would be the preferred one.
Table 5 provides the details.

coalition structure PSC (2) ERC (3) ICV (5)
2 + 3 + 5 0.4286 0.4286 0.1429
(2 + 3) + 5 0.4000 0.4000 0.2000
2 + (3 + 5) 0.5000 0.3750 0.1250
(2 + 5) + 3 0.3750 0.5000 0.1250

Table 5: The value π for the level coalition structures among 2, 3 and 5 in vI

Each party would prefer to be called to enter the last (the best position for ICV
in structure {{2, 3}, {1}, {5}} found in Table 3 was already announcing this fact).
As this is impossible to satisfy, we conclude that the very way to form the coalition
should be all at once, that is, 2 + 3 + 5.

Remark 5.4 (Why computing power?) To which end and how should our numerical
evaluation of the coalition formation be used? Well, once a coalition government is
formed, it is essential to share presidencies, cabinet ministers, parliamentary positions
and many other political responsibilities among the members of the coalition. For
instance, the main positions in the Catalonia case are the following (we are not trying
to be exhaustive):
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• Presidency of the Government

• Presidency of the Parliament

• Vice–presidency of the Government (Conseller en Cap)

• Ministry of Institutional Relations

• 14 more ministries (conselleries), all of them of a similar category

If the parties that join agree to assign a numerical value to each one of these
positions, say A, B, C, D and (14)d, respectively, they should share them in such a
way that the total values got by the three parties would satisfy the proportion 3:3:1
that corresponds to the proportional coalitional Shapley value of the finally formed
coalition structure. More precisely, since, actually, PSC got A, ERC got B and C,
and ICV got D, which should have been the sharing of the 14 remaining ministries?
The answer is easy: if α, β and γ are the number of ministries attached to PSC, ERC
and ICV, respectively, the conditions would be

α + β + γ = 14 and
A + αd

3
=

B + C + βd

3
= D + γd.

For example, if A = 10, B = 7, C = 7, D = 4 and d = 1 we would get α = 8, β = 4
and γ = 2. Instead, the actual sharing was as follows: 8 for PSC, 5 for ERC and 1
for ICV. From this distribution we can infer that the “values” of the positions agreed
by the colligated parties were satisfying, if we take d = 1,

B + C = A + 3 and D =
A + 5

3
.

For instance, something like A = 10, B + C = 13 and D = 5 would fulfill the above
conditions.

6 Discussion and conclusions

We have proposed and studied a new coalitional value for monotonic games with
coalition structure defined on an arbitrary finite player set. This value, which is a
coalitional Shapley value, combines the Shapley value and the proportional rule 26

in a two–step procedure like that of the Owen value. Its heuristics is clear and its
calculus is simple, even in the case of level coalition structures, to which it perfectly
adapts. We feel that it would be of a great interest in the future an experimental
work devoted to checking practitioners’ opinion about this value.

Two clearly different axiomatic characterizations of this new value, using in each
case logically independent sets of properties, have been stated and adapted, moreover,
to the subclass of simple games. In addition, we have developed applications to the

26The use of this rule is the main reason for restricting the domain of the value to monotonic
games.

28



analysis of the coalition formation in two contexts: the bankruptcy problem and a
voting problem, getting in both cases very reasonable results.

Our definition of the new value has been compared with that of the Owen value:
curiously, the Owen value admits a definition that strongly recalls ours (cf. footnote
10). Also our axiomatizations can be compared with some of the existing ones for
the Owen value. 27 They are quite similar and share the spirit of the balanced contri-
butions property, although we state it in a multiplicative form whereas for the Owen
value it adopts an additive form.

The main difference lies in the replacement in Theorem 4.1 for our value of the
additivity (resp., transfer property in case of simple games) of the Owen value with
a weighted additivity (resp., weighted transfer property), where weights can be inter-
preted as inverse profit indices. A “perverse law”, according to which the simpler is a
definition of a concept the more complicated is its axiomatic characterization, seems
to hold here, but this does not apply in the case of Theorem 4.2.

We would like to quote here the following ideas from Alonso et al. [2]:

For any value, understood as a solution concept for cooperative conflicts,
it is always interesting to have, in both theory and practice, not only an
explicit formula but also a list of properties of the value. In particular,
axiomatic systems are not only mathematically elegant: they also provide
a most convenient and economic tool to decide on the use of one or other
value. Of course, there may be many criteria to decide which is the most
suited value/index to apply in a given situation. Then, we feel that one
should strongly avoid being dogmatic at this point. Probably, there is no
value able to cover all situations. For example, there is no unanimous
criterion to choose among using either the Shapley value ϕ or the Banzhaf
value β as power index in all cases. We contend that pure and applied
game theorists should be flexible at most in this respect. Really, only a
few properties found in the literature can really be considered absolutely
compelling, i.e., almost no axiom is compelling in vacuo but only inserted
in the framework of a given, specific cooperative conflict. Even those that
appear as the best placed in this sense might well be conditioned by the
characteristics of the problem where we pretend to use the value they de-
fine. The conclusion is that all of us should look at axioms with an open
mind and without a priori value judgements. The history of science is full
of examples of theoretical models that only after a certain period of time
have been proven to be useful in practice.

Finally, let us refer to the examples analyzed in Section 5. In both coalition
formation problems the Owen value could have been used instead of our value. In
the bankruptcy problem (Example 5.1), the Owen value yields that the formation
of coalition {2, 3, 4} would be the most interesting scenario for creditor 1, but this
coalition is the worst for all its members among the feasible ones. Each one of creditors

27At this point we wish to declare that, as professional mathematicians and vocational game the-
orists, we consider the Shapley value and the Owen value two monuments to the human intelligence.

29



2, 3 and 4 would prefer forming a two–member coalition with any other of them or
go back to the singleton trivial structure. This result is quite similar to ours.

Instead, in the voting problem (Example 5.2), and starting at the restricted game
as we did, the Owen value differs from the proportional coalitional Shapley value in,
at least, three points. Using the Owen value: (a) the payoff obtained by PSC (resp.,
ERC) in joining CiU and forming a binary minimal winning coalition increases if,
simultaneously, the remaining two parties ERC and ICV (resp., PSC and ICV) form
a coalition, a fact that, unfortunately, is not under the control of PSC (resp., ERC);
(b) by assuming that these remaining parties do not join, the payoff that PSC and
ERC get in the binary coalitions CiU + PSC and CiU + ERC, respectively, equals
their payoffs in the ternary coalition PSC + ERC + ICV; and (c) no stable coalition
structure arises, and only after disregarding the binary coalitions because of (a) can
PSC + ERC + ICV be accepted as a “pseudo–stable” coalition structure, where PSC
and ERC do not get their strictly maximum share of power.

As was seen in Example 5.2, according to the proportional coalitional Shapley
value acting as power index: (a) the payoff obtained by the members of a winning
coalition in a simple game can never be affected by the behavior of the remaining
players (we feel that this is a very positive feature); (b) the payoffs obtained by PSC
and ERC in their binary coalitions with CiU differ from their payoff in PSC + ERC
+ ICV, so that maybe this value discriminates better than the Owen value; and (c)
coalition PSC + ERC + ICV arises as the only stable coalition (structure).
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“Owen’s coalitional value and aircraft landing fees.” Mathematical Social Sci-
ences 34, 273–286.

[25] Winter, E. [1989]: “A Value for Games with Level Structures.” International
Journal of Game Theory 18, 227–242.

[26] Winter, E. [1992]: “The consistency and potential for values with coalition struc-
ture.” Games and Economic Behavior 4, 132–144.

32


